282 research outputs found

    Identification of lysophospholipid receptors in human platelets: the relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate

    Get PDF
    AbstractLysophosphatidic acid (LPA) and sphingosine 1-phosphate (Sph-1-P) are known as structurally related bio-active lipids activating platelets through their respective receptors. Although the receptors for LPA and Sph-1-P have been recently identified in various cells, the identification and characterization of ones in platelets have been reported only preliminarily. In this report, we first investigated the distinct modes of LPA and Sph-1-P actions in platelet activation and found that LPA functioned as a much stronger agonist than Sph-1-P, and high concentrations of Sph-1-P specifically desensitized LPA-induced intracellular Ca2+ mobilization. In order to identify the responsible receptors underlying these observations, we analyzed the LPA and Sph-1-P receptors which might be expressed in human platelets, by RT-PCR. We found for the first time that Edg2, 4, 6 and 7 mRNA are expressed in human platelets

    Sphingomyelinase and ceramide inhibit formation of F-actin ring in and bone resorption by rabbit mature osteoclasts

    Get PDF
    AbstractRecent studies have demonstrated that ceramide plays an important role as a second messenger in many kinds of cells. However, it is not known whether apoptosis of and bone resorption by mature osteoclasts are mediated via sphingomyelinase (SMase) and ceramide. Thus, we examined the possible involvement of SMase and ceramide in the induction of apoptosis in and bone resorption by rabbit mature osteoclasts. SMase and C2-ceramide inhibited strongly F-actin ring formation of and bone resorption by the osteoclasts. However, the osteoclast apoptosis was not induced by C2-ceramide. The ceramide inhibition of the bone resorption was suppressed by dl-threo-dihydrosphingosine, an inhibitor of sphingosine kinase. In addition, we observed that sphingosine-1-phosphate is able to inhibit bone resorption by the osteoclasts. These results suggest an important role of the sphingomyelin pathway in bone resorption by rabbit mature osteoclasts

    Stability of Fiber Reinforced Sand Retaining Walls

    Get PDF
    A ten meter high retaining wall made by sands reinforced with continuous fibers was constructed in 1988. Thickness of the retaining wall was 1 mat the top and 2.5 m at the bottom, and the slope was 63° at the face and 71° at the back. Earth pressure acting on the wall, displacements of the face, settlements of the fill and acceleration of the retaining wall were measured. During the construction, around the third height of the wall was displaced 15 cm in a forward direction. At the time of an earthquake, the values of the maximum horizontal acceleration at the original ground surface and at the top of the retaining wall were recorded to be 95 gal and 200 gal respectively, and no damage was found. The relation between the increment of the earth pressure during earthquake and the movements of the wall and the fill is discussed

    Paracrine Effect of NRG1 and HGF Drives Resistance to MEK Inhibitors in Metastatic Uveal Melanoma.

    Get PDF
    Uveal melanoma patients with metastatic disease usually die within one year, emphasizing an urgent need to develop new treatment strategies for this cancer. MEK inhibitors improve survival in cutaneous melanoma patients but show only modest efficacy in metastatic uveal melanoma patients. In this study, we screened for growth factors that elicited resistance in newly characterized metastatic uveal melanoma cell lines to clinical-grade MEK inhibitors, trametinib and selumetinib. We show that neuregulin 1 (NRG1) and hepatocyte growth factor (HGF) provide resistance to MEK inhibition. Mechanistically, trametinib enhances the responsiveness to NRG1 and sustained HGF-mediated activation of AKT. Individually targeting ERBB3 and cMET, the receptors for NRG1 and HGF, respectively, overcome resistance to trametinib provided by these growth factors and by conditioned medium from fibroblasts that produce NRG1 and HGF. Inhibition of AKT also effectively reverses the protective effect of NRG1 and HGF in trametinib-treated cells. Uveal melanoma xenografts growing in the liver in vivo and a subset of liver metastases of uveal melanoma patients express activated forms of ERBB2 (the coreceptor for ERBB3) and cMET. Together, these results provide preclinical evidence for the use of MEK inhibitors in combination with clinical-grade anti-ERBB3 or anti-cMET monoclonal antibodies in metastatic uveal melanoma

    Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin Metabolism in Physiology and Disease

    Get PDF
    Iron has played an important role in energy production since the beginning of life, as iron-catalyzed redox reactions are required for energy production. Oxygen, a highly efficient electron acceptor with high reduction potential, facilitates highly efficient energy production in eukaryotic cells. However, the increasing atmospheric oxygen concentration produces new threats to the organism, as oxygen reacts with iron and produces reactive oxygen species unless its levels are strictly regulated. As the size of multicellular organisms increases, these organisms must transport oxygen to the peripheral tissues and begin to employ red blood cells containing hemoglobin. This system is potentially a double-edged sword, as hemoglobin autoxidation occurs at a certain speed and releases free iron into the cytoplasm. Nrf2 belongs to the CNC transcription factor family, in which NF-E2p45 is the founding member. NF-E2p45 was first identified as a transcription factor that binds to the erythroid gene regulatory element NF-E2 located in the promoter region of the heme biosynthetic porphobilinogen deaminase gene. Human Nrf2 was also identified as a transcription factor that binds to the regulatory region of the β-globin gene. Despite these original findings, NF-E2p45 and Nrf2 knockout mice exhibit few erythroid phenotypes. Nrf2 regulates the expression of a wide range of antioxidant and detoxification enzymes. In this review article, we describe and discuss the roles of Nrf2 in various iron-mediated bioreactions and its possible coevolution with iron and oxygen

    Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod — possible control of iron sulfide biomineralization by the animal

    Get PDF
    A gastropod from a deep-sea hydrothermal field at the Rodriguez triple junction, Indian Ocean, has scale-shaped structures, called sclerites, mineralized with iron sulfides on its foot. No other organisms are known to produce a skeleton consisting of iron sulfides. To investigate whether iron sulfide mineralization is mediated by the gastropod for the function of the sclerites, we performed a detailed physical and chemical characterization. Nanostructural characterization of the iron sulfide sclerites reveals that the iron sulfide minerals pyrite (FeS2) and greigite (Fe3S4) form with unique crystal habits inside and outside of the organic matrix, respectively. The magnetic properties of the sclerites, which are mostly consistent with those predicted from their nanostructual features, are not optimized for magnetoreception and instead support use of the magnetic minerals as structural elements. The mechanical performance of the sclerites is superior to that of other biominerals used in the vent environment for predation as well as protection from predation. These characteristics, as well as the co-occurrence of brachyuran crabs, support the inference that the mineralization of iron sulfides might be controlled by the gastropod to harden the sclerites for protection from predators. Sulfur and iron isotopic analyses indicate that sulfur and iron in the sclerites originate from hydrothermal fluids rather than from bacterial metabolites, and that iron supply is unlikely to be regulated by the gastropod for iron sulfide mineralization. We propose that the gastropod may control iron sulfide mineralization by modulating the internal concentrations of reduced sulfur compounds

    Mini-open excision of osteoid osteoma using intraoperative O-arm/Stealth navigation

    Get PDF
    Background Although osteoid osteomas have traditionally been treated by surgical excision, radiofrequency ablation (RFA) has gained favor as a less invasive procedure. However, RFA is contraindicated for osteoid osteomas close to the skin or crucial neurovascular structures, and is not covered by national health insurance in Japan. The aim of the present study was to evaluate the efficacy of surgical excision of osteoid osteomas using intraoperative navigation. Methods We performed a retrospective review of five patients with osteoid osteoma who underwent a mini-open excision using O-arm/Stealth navigation at our institution. The osteoid osteomas were excised using a cannulated cutter or curetted out with the assistance of navigation. Results Complete excision was achieved in all patients, which was confirmed by pathological examination. The mean skin incision was 2.1 cm (range, 1.5 to 3.0 cm) and the mean duration required for setup three-dimensional image was 15 min (range, 12 to 20 min). Although the mean visual analog scale score was 7 (range, 4 to 8) before surgery, all patients experienced relief from their characteristic pain immediately after surgery, with the mean scores of 2.2 (range, 1 to 3) and 0 at 2 days and 4 weeks after surgery, respectively. There was no intra-operative complication related to the navigation and no recurrence was observed during the mean follow-up period of 25 months (range, 13 to 33 months). Conclusions Mini-open excision using intraoperative O-arm/Stealth navigation is a safe and accurate procedure for patients with osteoid osteoma, which could cover the limitation of RFA

    Statistical Analysis of Prognostic Factors for Survival in Patients with Spinal Metastasis

    Get PDF
    There are a variety of treatment options for patients with spinal metastasis, and predicting prognosis is essential for selecting the proper treatment. The purpose of the present study was to identify the significant prognostic factors for the survival of patients with spinal metastasis. We retrospectively reviewed 143 patients with spinal metastasis. The median age was 61 years. Eleven factors reported previously were analyzed using the Cox proportional hazards model:gender, age, performance status, neurological deficits, pain, type of primary tumor, metastasis to major organs, previous chemotherapy, disease-free interval before spinal metastasis, multiple spinal metastases, and extra-spinal bone metastasis. The average survival of study patients after the first visit to our clinic was 22 months. Multivariate survival analysis demonstrated that type of primary tumor (hazard ratio [HR]=6.80, p<0.001), metastasis to major organs (HR=2.01, p=0.005), disease-free interval before spinal metastasis (HR=1.77, p=0.028), and extra-spinal bone metastasis (HR=1.75, p=0.017) were significant prognostic factors. Type of primary tumor was the most powerful prognostic factor. Other prognostic factors may differ among the types of primary tumor and may also be closely associated with primary disease activity. Further analysis of factors predicting prognosis should be conducted with respect to each type of primary tumor to help accurately predict prognosis
    corecore